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ABSTRACT

In the modern world, data is the most important asset that an individual or an organization
can possess. As a result, data security has turned out to be the most vital issue in data com-
munication. Data security measurements are essential to restrict data from being misused in any
aspect. Cryptography and steganography are two of the most popular security methods. Cryp-
tography deals with data encryption whereas steganography handles data hiding. Though both
cryptography and steganography can be used individually to provide security for data, combining
these techniques turns out to be much more resilient to attacks. This paper describes a combined
technique of cryptography and steganography in addition to randomized algorithm and automatic
generation of cover texts using sequence to sequence model. For embedding, The proposed method
firstly converts each character to a random numerical counter-part. Each of these numbers point
to a unique phrase or group of words which is provided into the text generator for generating a
whole sentence that works as the cover text.For extracting the secret text, the exact opposite of
the embedding process is performed to extract the secret text.

Keywords: Cryptography, Steganography, Sequence to Sequence Model, Randomized Algo-
rithm, GPT-2, Transfer Learning, Text Generation.
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CHAPTER I

Introduction

1.1 Overview

In a world where data is the key feature in every aspect, it is essential to provide security
measures while transmitting data over an open channel. The primary security standards that
a system has to follow are described by three characteristics: integrity, confidentiality, availabil-
ity. Security of data can be compromised in the forms of data theft, data tampering, falsifying
identities, password-related threats, etc.

The most significant factor in data security challenges is considered to be data leak preven-
tion, with 88 per cent of critical and very important challenges. Likewise, Data Protection and
Segregation carry 92 per cent significance on security challenges[1]. Between 25 May 2018 and 27
January 2020, organizations identified a total of 160,921 personal data breaches[2]. The average
price of a security breach has already been estimated to be 3.86 million[2].] Data encryption is an
appropriate fix to overcome data security challenges. It is effective to encrypt data or take some
other measurements to hide the data before sending it to the receiver.

1.1.1 Cryptography

Cryptography is mainly a process where a message scrambles and can not be understood by
anyone. It is primarily a secure message exchange among transmitter and recipient. Without
a transmitter or a recipient, it can not be understood by anyone else. To understand this mes-
sage, one needs to know the Key where the Key helps to decrypt the message. This encrypted
message is basically used for confidential data transfer and security purposes. In our daily life,
many people use cryptography; they don’t even know they are using it. For security purposes
or sending any confidential information, many people use cryptography. It can be used for good
and bad purposes.It can be used in destructive works, which is really not good. For its extremely
useful, it is also considered highly fragile, as cryptographic systems can become included due
to a single programming or specification error[3]. Two types of cryptography systems are exist.
There are two types of cryptography: symmetric cryptographic encryption and asymmetrical key
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cryptography[4]. Among these two, symmetric cryptography is the best and oldest technique.

Figure 1.1: Classification of cryptography

• Symmetric Key Cryptography
Symmetric Key is known as the Secret Key. It’s also called shared key cryptography. In this
process, when a sender sends a message, he sends a key and then the receiver receives the
same Key for encryption and decryption.

Figure 1.2: Symmetric cryptography

• Asymmetric Key Cryptography
Asymmetric Key is a process where the sender sends a secret key to the receiver; then the
receiver receives a different key. In asymmetric encryption and decryption, here we used two
different keys. One is called a private Key, and another is a public Key. These two keys
linked each other mathematically[5].

Figure 1.3: Asymmetric cryptography
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1.1.2 Steganography

Steganography is mostly used to portray impenetrable communication. With the domains of
data security and cryptography, we primarily encrypt information until no one except the sender
and recipient can decrypt it; however, in steganography, we aim to conceal data instead of encrypt
it. We can call them cousins in a Family because both of their majors is secure, confidential data.
We can call it a hide and seek process. This hiding process occurs by changing the last bit of each
of those bytes to hide one bit of data. Basically, steganography is an archaic subject, but often we
are given in terms of the prisons problem in modern steganography. In the prison’s problem, two
inmates named Alice and Bob wanted to escape the prison, so they wanted to communicate with
each other, but the warden always kept an eye on prisoners. If he suspects anything about their
escape plan, he will punish them. So Alice and Bob had to communicate with each other with
secret messages, and that’s why they embedded their message and made it invisible. Thus they
communicated with each other, and the warden didn’t find it out. Relying on the Algorithm’s
secret is typically not seen as a good idea. Alice and Bob share a secret key in private key
steganography, which is used to encrypt the communication. In private, Key basically uses a
password which is used to seed a pseudorandom generator to choose where the secret message
should be included in the cover object. In a public Key, the sender and receiver know each other’s
public Key[6].

Figure 1.4: The process of steganography

Steganography is classified into various types according to its importance and goals. These
are based on cover media. In-Text steganography payload is hidden by text. This text can
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hide by many shifts such as line shifting, word shifting. In Image, steganography payload is
hidden by Image. This can be hidden by image files such as JPEG, GIF, PNG. In the video, the
steganography payload is hidden by Mp4. Video is a combination of images and video. So this
file is huge in size. This huge amount of secret data can be embedded in video files[7]. In audio,
the steganography payload is hidden by map3 or Wav. In this process, the message is embedded
by shifting the binary sequence of that file.

In-Network steganography payload is hidden by a network protocol such as TCP, IP, UDP. The
ISO layer network model includes conversion channels which can be utilized for steganography of
network protocols[7].

1.1.3 Adaptive Steganography

In steganography, we hide confidential data for security. For hiding data, we use Image, audio,
video, and network steganography. Using these sometimes faced some difficulties like embedding
model textured or some noisy regions. To prevent these problems, we actually use adaptive
steganography. The cost of altering each pixel is generally defined first, and then the adaptive
steganographic strategy is executed. Encoding the hidden message while keeping the total to
a minimum of all modified pixel costs. Efficient coding algorithms can incorporate the targeted
payload with such an estimated distortion around the associated rate-distortion bound’s minimum
feasible values. Is it mainly a comparison between stego objects and cover objects[6].

Figure 1.5: Adaptive steganography
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1.1.4 Machine Learning and Text Generation Steganography

Machine learning and deep learning models can be very convenient in terms of information
hiding and generating stego texts or images. The Algorithm used to hide information can be as
crucial as the carrier[8]. Models of deep learning work as black boxes where the processing of
output from the input is complicated as unexpected outcomes may arrive. However, in detecting
steganography images, deep learning models are used [9].

Because of higher-level security and visible quality, adversarial architecture is extensively used
[10]. The heart of the adversarial architecture happens to be an adversarial neural network that
can be tuned up from a regular steganalysis network or a methodical CNN[11].

Synthesis technology is another intriguing study area in deep hiding in safe steganography.
Unlike the embedding-based systems, synthesis technology does not require any change since
containers are formed straight by secret[12].

LFM (light field messaging)[13] is a practical application for information concealment since it
embeds, transmits, and receives concealed data in the form of an image displayed on the screen,
which is subsequently captured by the camera. LFM is frequently referred to as photographic
steganography.

Figure 1.6: Machine Learning Process for Steganalysis

As natural language processing(NLP) is progressing over the years, generating stego text auto-
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matically to hide information is becoming famous. These steganographic algorithms work without
inherent moderation of cover text. Steganographic texts are generated according to the data
that has to be embedded throughout the process. In comparison with the traditional approaches,
these steganographic meth-ods generally provide well-built anti-interference and better embedding
capability[14].

Figure 1.7: Types of Text Steganography

1.2 Problem statement

This article proposes an end-to-end message passing security system that consists of encryption,
randomization, and machine learning-based steganography. Both the encoder and decoder section
of the proposed method consists of these three parts. While steganography or encryption alone
provides sufficient protection against several cyberattacks, merging several methods can result in
a better and more secure message passing protocol.

1.3 Limitations of Existing Works

The following drawbacks in present systems have been discovered by examining several con-
current publications of similar topics.

i Higher space per bit embedding ratio

ii May not always provide security of information.

iii The ability to hide information is limited.

iv Manually generated stego texts may easily be detected.
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1.4 Objective

This proposed system will serve the following objectives:

i To combine the idea of data encryption,randomization and data hiding for better security.

ii To generate cover texts automatically.

iii To provide better resistance against steganalysis and cryptanalysis.

1.5 Research Outline

The remainder of this essay is organized as follows. Chapter II examines the literature
search as describes the previously published works. Chapter III introduces the proposed system
framework, and finally, a conclusion is drawn in Chapter IV .
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CHAPTER II

Literature Review

2.1 Introduction

For many years many have worked in this field of data security. From the start of data
transferring, it is considered a vital issue. This data security mainly hides confidential data. Here
we encrypt data with two processes. Data is encrypted by two processes. One is cryptography,
and another one is steganography. Cryptography is mainly a secret conversion between sender
and receiver. A message is sent with a secret key. And only the sender and receiver are aware
of this Key. Steganography is a technique in which the sender conceals data using text, image,
video, audio, or a network.

2.2 Cryptography and Steganography

Khari et al.[15] proposed a data security scheme for IOT which uses EGC (Elliptic Galois
Cryptography) to encrypt input data and a Matrix XOR steganography method to hide the
encrypted input inside a low resolution image. Their proposed method also applies Adaptive
Firefly algorithm to minimize the choice of cover pieces in an image.

An adaptive least significant bit(LSB) matching comparison method was suggested by Luo et
al.[16]. Their method detects horizontal and vertical edges as the edge regions in an image are
found by calculating the divergence between successive pixels.

Hunan et al.[17] proposed an adaptive steganography method in terms of text steganography.
They have proposed a distortion that includes statistical and linguistic distortion. Word frequency
is the key measure in statistical distortion. To lessen the embedding impact, the Syndrome-trellis
code has been used.

Por et al.[18] came up with a format oriented steganography method where the idea is to make
use of the space character in the cover text. By regulating the alteration, the space symbol is
altered to insert hidden information. The visual quality of the stego text may be maintained by
adjusting the magnitude of the space character mutation.
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2.3 Machine learning in Steganography

Goodfellow et al.[19] utilized an artificial neural network to recreate a game that included an
image generating network and a discriminatory network that determined if a picture was genuine
or synthetic. Generative Adversarial Networks is the name given by the authors to this type of
network (GAN approach).

Yedroudj et al.[20]have employed a fundamental model in a simple meta-architecture and
immediately added an adversarial discriminator to enhance the model’s resilience to steganalysis.
Furthermore, because of discriminator’s effectiveness is constrained by the antagonistic training
strategy, these strategies do not overcome separately trained reliable findings.

Li et al.[21] have used a deep learning model, which dynamically creates a systematic emotional
dictionary that serves as the foundation for text emotional steganography information security. It
also considers the information concealment algorithm, which is based on emotive word replacement,
matrix encoding, and other techniques.

2.4 Text generation based steganography with Machine Learning

To create text steganography, Yu et al.[22] recommended using a unique type of poetry known
as Song Ci, which originated in ancient China’s Song Dynasty. This was the first text steganog-
raphy method to use a Chinese artistic technique. Their approach, on the other hand, merely
recombines a new Ci-poetry by selecting relevant words from an existing Song-Ci poem. Because
it does not create new Ci-poems from scratch, its use may be limited. Furthermore, throughout
the creation process, their technique picks words at random, disregarding word collocations and
line connections. This frequently leads to the lack of a core subject for Ci-poems created by their
algorithms which might prompt suspicion and decrease security.

LI et al.[23] have suggested a method to create a particular topic graph and use a graph
encoding structure to encode the idea and content of the graph into vectors. The stego text is
then generated and transmitted to the decoder. The transformer architecture is used to encode
the secret data bitstream and a particular matter graph using a graph embedding structure.They
use the decoder secret sentence to focus on information integration encodings at each decoding
sampling interval. The output is picked from the language of the decoder or by transferring the
produced vectors.

Yang et al.[24] have developed a linguistic steganography based on the RNN-Stega algorithm
(Recurrent Neural Networks). It can build high-quality text covers automatically from a secret
bitstream that will be embedded.But there is some limitations as the standard range of contextual
information that RNNs can access is in practise is quite limited.

Yang et al.[25] presented a steganography method that employs Knowledge graph in the as-
sistance of creating sentences that hides hidden information. This approach grants authorisation

9



to a certain extent over the semasiology of the created texts. They have attempted to enhance
the grammatical accuracy and semantic quality of the steganographic texts compared to certain
formerly existing methods.
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CHAPTER III

System Model

In this paper, a new technique of text steganography is presented. This approach uses the
Generative Pre-trained Transformer 2 (GPT-2) and Transfer learning (TL) to generate cover texts
using randomly selected words and phrases to hide the payload. This method uses a collection of
randomly selected phrases and words previously generated, and a set of lists contains several lists
of various lengths. Each list contains randomly generated numbers within a pre-defined range.
The cover text is generated in such a way that it remains grammatically coherent and meaningful.
It is nearly impossible to detect the words of phrases from the whole sentence that hides the
intended message.

3.1 Introduction

The system workflow is discussed in section 3.2 and proposed system architecture and the
mechanisms used for implementing the proposed work is discussed in section 3.3 and 3.4.

3.2 Basic Workflow

For simplicity, the basic workflow of the implemented method is divided into two blocks:
embedding and extracting.

3.2.1 Embedding

Embedding is the process where the secret text is encrypted and hidden in a cover text gener-
ated with the GPT-2 text generator. The process of embedding can be described in four phases:

11



Figure 3.1: Embedding process
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3.2.1.1 Initialization

At first, we initialize the process by defining some necessary global variables and lists. A
two dimensional list is created as a storage for random variables between a pre-defined range. A
specific number of unique phrases are taken from a large collection file of phrases for sentence
generation. The phrases are mapped and inverse mapped into two dictionaries against a set of
random generated numbers in such a way that each key and value pairs remain exactly the same
for both dictionaries.

3.2.1.2 String to bit stream

The characters that are to be hidden are converted to a binary stream according to their ASCII
values. The converted bits are added one after another to form a bit sequence.

3.2.1.3 Bits to number conversion

In each iteration, n numbers of sequential bits are taken from the binary stream and converted
into corresponding decimal values. Each decimal value corresponds to a list index from the set
of lists. Finally, a random decimal value is selected from each corresponding list. Thus, only one
randomly generated decimal value is selected from the pre-defined set of lists for each character
of the input text.

3.2.1.4 Number List to generated paragraph

Each of the selected numbers is then used to point a unique group of words from the pre-
defined collection of phrases by appropriate number to string mapping. Each group of words is
then fed into the GPT-2 model for an entire sentence generation. Semantic coherence is found as
previously generated sentences are also provided into the text generation model along with the
following selected group of words.

13



3.2.2 Extracting

Extracting is the process of finding out the secret text from the embedded text. The process
of extracting can be described in four phases:

Figure 3.2: Extracting process
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3.2.2.1 Sentence to number

Each sentence of the embedded paragraph is compared with the String to number dictionary
to find out the matching phrase in the sentence. The value from for the matching phrase is taken
and added to a list.

3.2.2.2 Number to index

The characters that are to be hidden are converted to a binary stream according to their ASCII
values. The converted bits are added one after another to form a bit sequence.

3.2.2.3 Index to binary

Each selected index (integer value) is converted into n bit binary equivalent and all the bits
are added to form a binary sequence.

3.2.2.4 Binary to character

In each iteration, 8 bits are taken sequentially and converted to equivalent character. All the
characters are appended together to form the extracted secret text.

15



3.3 Hash Table

The hash matrix is a table which defines the conceptual data type linked array, which is a
format that may map names to entries. A hash table makes use of a hash function to generate
an index, often referred like a hash code, within a collection of bins or positions where the desired
item can be found.

Figure 3.3: Hash Table

3.4 Sequence to Sequence Model

When the input length and output length are both variable, a model series to sequencing
attempts to translate an input data horizontally to a given outcome. Pattern to models are
required for services like google Translate, dialogue devices, including online conversations.

Figure 3.4: Sequence to Sequence Model

The model is made up of three pieces: encoder, vector encoder and decoder.

• Encoder
A stack of several repeating devices where each receives a single input sequence element and
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gathers and spreads information for the input sequence. In the responding of questions, all
terms in the query are collected inside the input sequence. The i of each x1 is the order of
that word.The hidden hi states are calculated using the following formula

ht = f(W (hh)ht−1 +W (hx)xt)

We merely apply the weight to h(t−1) and input vector xt in a previously concealed state.

• Encoder Vector
This is the ultimate hidden state generated by the model’s encoder. The above formula is
calculated to find it out. In order to assist the decoder to accurately anticipate this vector
it will contain the information for all input components. The decoder portion of the model
functions as the initial hidden state.

• Decoder
a stack of many repeating units in which a yt output is predicted at a time t. Each unit
accepts the secret state of the preceding unit and creates and produces and produces its own
hidden condition. The output sequence is a collection of all words from the response in the
question answering issue. Every word is shown as yi where i is the order. Any hidden hi

state is calculated with the formula

ht = f(W (hh)ht−1)

We use the previous concealed state to calculate the next one, as we can see. The output yt
is calculated with the formula at step t

yt = softmax(W Sht)

Softmax function is a generalization of logistic functions used to construct a vector to decide
the ultimate performance.

3.4.1 Generative Pretrained Transformer 2

GPT-2 is an artificial intelligence language model that implements a deep neural network, a
transformer model to be precise. A language model is an extension of a machine learning model
that can predict the next word by analyzing a part of a sentence. GPT-2 is open-source and was
developed by OpenAI in 2019. It is trained on a vast dataset. The architecture of the GPT-
2 is quite identical to that of the decoder-only transformer. GPT-2 can predict the next item
in a random sequence. It is often used as a text generator, a text translator, and a paragraph
summarizer. Unlike LSTM and RNN, GPT-2 implements an attention mechanism that provides
attention to predicting the most correlated portions of the input text.
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Figure 3.5: GPT-2 Architecture
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CHAPTER IV

System Environment and Tools

4.1 Python

Python is an object-oriented, strong programming language with dynamic typing and is in-
terpreted. Its high-level data structures and dynamic semantics make it particularly well-suited
for faster development and usage as a scripting or connector language for connecting elements.
Python’s straightforward, easy-to-learn format puts a premium on readability, which reduces the
value of program maintenance. In addition, Python allows modules and packages, which promotes
the modularity and reuse of code in programs.

4.2 Numpy

NumPy, which refers to Numerical Python, is a package that contains multidimensional array
structures and algorithms for handling them. NumPy enables the execution of mathematical and
logical computations on arrays. NumPy’s main significant object is the ndarray type, which would
be an N-dimensional array. It is a term that refers to a group of identical goods. A zero-based
address is used to retrieve items from the collection. Each element inside andarray has the same
physical dimensions as the memory block. Each item in the ndarray would be a data-type object
(called a dtype). Any element retrieved out of andarray object (by splitting) is expressed in
Python by only a Python object from one of the array scalar types. .

4.3 Pandas

Pandas is a Python library that provides a quick, versatile, and creative data model that makes
it natural and straightforward to deal with related or marked data. It is intended to serve as the
foundational high-level structural unit for performing real-world information processing in Python.
Furthermore, it aspires to stand as the most robust and versatile open-source data processing tool
accessible in any language. It is now well on its path to accomplishing this objective. The two
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fundamental representations of data structures in pandas are Series (1-D) and DataFrame (2-
D). They both support the great majority of everyday use cases in mathematics, social studies,
economics, and various engineering disciplines.

4.4 Request module

The applications module allows users to send Requests to the server using Python.The Requests
library is a fundamental feature of Python that allows you to make HTTP requests to an apply
Different. Whether it’s Http APIs or web harvesting, a basic understanding of requests is required
before progressing with these platforms. When a request is made to a URI, it responds with a
respond. Python requests include built-in management functionality for both the client and the
server.

4.5 Regular expression

Python’s regex capability is contained in the re module. The re module offers a plethora of
useful features and procedures, the majority of which will be covered in the following tutorial in
the sequence A RegEx, or Notation, is a collection of symbols that together define a search query.
RegEx could be used to determine whether or not a string matches a specified search query.

4.6 Json module

JSON is a standardized text-based method for encoding structured data that is based on the
Object notation language. It is frequently used for data transmission in web applications.Python
includes a library called json that handles JSON. To make use of this feature, we need to install
the json module into our Python script. The content in JSON is represented by a quoted string
containing the value from the vital mapping contained within
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CHAPTER V

Implementation of Proposed System Model

5.1 Embedding secret text

The implementation algorithm of embedding is divided into several functional blocks for better
understanding. These functional blocks are described with appropriate algorithms. All the blocks
work together, complete proper actions and communicate with each other to cumulatively embed
the secret text.

Figure 5.1: Embedding process
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5.1.1 Embed

In this section, all the global variables are initialized. The secret text is taken as the input.
Process initialization is done through invoking the method Initialize (). The StrToBit() function
is called and it takes the secret text as the only parameter. This function returns a binary bit
sequence BitStream by converting the characters of the secret text into binary equivalents. An-
other function BitsToNum() is invoked. It takes the BitStream as its parameter, takes n bits at a
time sequentially, converts it to corresponding decimal value, adds it to a list and returns the list
as NumberList. Finally, this NumberList is passed as an argument in the function GeneratedSen-
tece(). This function produces the generated text output by performing appropriate actions based
on each value in the NumberList.

Algorithm: Embedding
Result: EmbeddedOutput
Data: StrIn
initialization;
n← Number of bits to represent a character;
AvgLen← Average length of lists;
Deviation← a small number to randomize length of lists;
c← Constant value ;
StrIn← Input string of characters;
BitStream← Empty string variable;
Range← 2n ∗ AvgLen ∗ c;
RandomNumbers← 1-D list of random numbers from 0 to Range;
NList← Converted 2-D list from RandomNumbers with 2n 1-D lists;
MapNumStr ← 1-D Empty list;
MapStrNum← 1-D Empty list;
EmbeddedOutput← 1-D Empty list;
NumberList← 1-D Empty list;
Phrases← 1-D Empty list;
ExtractedNumbers← 1-D Empty list;
BitStream2← Empty string variable;
ExtractedOutput← Empty string variable;

Initialize();
BitStream← StrToBit(StrIn);
NumberList← BitsToNum(BitStream);
EmbeddedOutput← GeneratedSentence(NumberList);
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5.1.2 StrToBits()

On being invoked, StrToBits() takes the secret input text as its argument, takes each character
of the string and converts it to equivalent binary byte. It return a string BitStream the binary
values of each characters are added up.

Algorithm: StrToBits()
Result: BitStream
Data: StrIn
BitStream← Binary conversion of StrIn;

5.1.3 BitsToNum()

When invoked, this function takes n number of bits sequentially from the BitStream in each
iteration, converts the n number of bits to corresponding decimal value, and adds those values
into a list NumberList.

Algorithm: BitsToNum()
Result: NumberList
Data: BitStream
i← 0;
while i < length(Bitstream) do

bits←BitStream[i : i+ n];
dec←Decimal equivalent of bits;
list← NList[dec];
size← Length of list;
index← Random integer between 0 and size;
NumberList← Append list[index] to NumberList;
i←i+n;

end
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5.1.4 RandomNumberGeneration()

There is a block method RandomNumberGeneration() that returns a random number between
0 and Range. Range is directly related to the number of bits used to represent a character (n),
average length(AvgLen) of a list in the NList, and a constant defined value(c). Moreover, the
random values that are generated are also added to a global list named RandomNumbers.

Algorithm: RandomNumberGeneration
Result: number

number ← A random generated integer number between 0 to Range;
if number does not exists in RandomNumbers then

RandomNumbers←Add number to RandomNumbers;

5.1.5 FillupNList()

The 2-D list NList can be considered as a collection of 2n number of 1-D Lists, where each list
is of random length. This technique adds an extra level of randomness which makes the algorithm
much robust against detection. Each element of every the 1-D lists are unique and generated by
invoking the RandomNumberGeneration() method. Finally, all the single dimensional lists are
made a collection to build up the NList.

Algorithm: FillupNList()

i← 0;
while i< 2n do

RandomLength= AvgLen+ (Random generated integer between -Deviation and
+Deviation);
T list←Empty lists;
while RandomLength > 0 do

RandomNumber ←RandomNumberGeneration();
T list←Append RandomNumber to T list;
RandomNumber ←RandomNumber−1;

end
NList←Append T list to NList;
i←i-1;

end
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5.1.6 Initialize()

The first thing Initialize() does is it invokes another method called FillupNList(). NList is
initialized as an empty 2-dimensional List and FillupNList() generates and places random val-
ues in the NList. After that, a specific number(same as the length of RandomNumbers) of
phrases(collection of words) from are loaded and uniquely mapped into a dictionary MapNum-
Str against the values of the list RandomNumbers. Similarly, the values of the RandomNumbers
are uniquely mapped into another dictionary MapStrNum against the loaded phrases.MapNumStr
and MapStrNum are mapped exactly inverse of one another. It means that each key and value
pair of both the dictionaries will be exactly the same.

Algorithm: Initialize()

FillupNList();
Len← Length of RandomNumbers;
Phrases← Len Number of phrases;
MapNumStr ← Converted to dictionary{Keys: RandomNumbers, Values: Phrases};
MapStrNum← Converted to dictionary{Keys: Phrases, Values: RandomNumbers};

5.1.7 GeneratedSentence()

This method serves an important purpose of selecting appropriate phrases for sending into
the GPT-2 text generator through another function TextGeneration(). For a value in Random-
Numbers, first we find out the single dimension list from NList that has the same index as the
value in RandomNumbers. Then we select a value from that single dimensional list in a random
manner and find the phrase that is mapped against this found value. Finally, this phrase is sent to
the Sequence to Sequence text generator model for an entire sentence generation.The same exact
process is repeated for every single value in RandomNumbers. We can find noticeable semantic
correlation between the generated sentences because we send the previously generated sentences
with the selected phrases in every iteration, except for the first.Each phrases or group of words are
unique. If there are more than two common words in two phrases, one of them is slightly changed
by adding a ‘s’ or ‘e’ at the end of it in appropriate scenarios that doesn’t significantly change the
meaning or structure of the phrase.
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Algorithm: GeneratedSentence()
Result: EmbeddedOutput
Data: NumberList
LastSentence← Empty string;
i← 0;
while i < length(NumberList) do

word←NList[i];
NewSentece←word;
CurrentSentece← Empty String
if CurrentSentence==EmptyString then

CurrentSentence = TextGeneration(NewSentence, 0) +′ .′ ;
else

NewSentence = LastSentence+ word

CurrentSentence = TextGeneration(NewSentence, 1) +′ .′;

end
id←Empty List j←Length of word;
while j<length of CurrentSentence do

if CurrentSentence[j] ==′ ′ or CurrentSentence[j] ==′ .′ then
break;

id←j appended to id;
if Length of id>0 then

CurrentSentence =word+CurrentSentence[id[length of id-1] : length of
CurrentSentence]

end
EmbeddedOutput←CurrentSentence apeended to EmbeddedOutput;
CurrentSentence←LastSentence
j ←j+1

end
i←i+1
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5.1.8 TextGeneration()

This method binds the GPT-2 model with our algorithm through a API call. It takes two
arguments, a phrase and a position. The phrase is fed to the model for generating complete sen-
tences that will work as our cover media. The position is used for returning a particular sentence
which has the same index as the position for further sentence generation.

Algorithm: TextGeneration()
Result: Words, Position
Data: Sentence
ModelOutput← Output from the GPT-2 model with input Words;
JSON ← json file from ModelOutput;
AllSentences← List of all sentences from JSON ;
Sentences←Sentence with index Position from AllSentences ;
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5.2 Extracting secret text

The implementation algorithm of extracting is divided into several functional blocks for better
understanding. These functional blocks are described with appropriate algorithms. All the blocks
work together, complete proper actions and communicate with each other to cumulatively extract
the secret text from the embedded text.

Figure 5.2: Extracting process
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5.2.1 SentenceToNumber()

This function takes EmbeddedOutput as it’s argument. EmbeddedOutput is splitted into each
sentences. Each sentence is compared with the MapStrNum to find out the matching phrase in
the sentence. The key value from the MapStrNum for the matching phrase is taken and added to
a list called ExtractedNumbers.

Algorithm: SentenceToNumber()
Result: ExtractedNumbers
Data: EmbeddedOutput
Sentences←List of all the sentences in EmbeddedOutput ;
i←0 ;
while i<Length of Sentences do

p←Matched phrase from Phrases that exists in Sentence[i] ;
num← Corresponding number of p in MapStrNum;
ExtractedNumbers←Add num to ExtractedNumbers ;
i←i+1 ;

end

5.2.2 IndexToBinary()

This method takes the ExtractedNumbers as the only parameter. For each value of Extract-
edNumbers, the single dimensional list is selected from NList which contains that value. The
index of the single dimensional list from NList is selected, converted to n bit binary, and added
to BitStream2.

Algorithm: IndexToBinary()
Result: BitStream2
Data: ExtractedNumbers
i←0;
while i < Length of ExtractedNumbers do

l←1-D list in NList that contains ExtractedNumbers[i] ;
index← Index of Nlist[l] ;
BitStream2← Add converted binary equivalent of index to BitStream2 ;

end
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5.2.3 BinaryToChar()

From the BitStream2, 8 bits are taken in each iteration, converted to equivalent character, and
added to the ExtractedOutput.

Algorithm: BinaryToChar()
Result: ExtractedOutput
Data: BitStream2
i←0;
while i < Length of BitStream2 do

byte←8 bits from position i in BitStream2 ;
character ← Convert byte into corresponding charachter;
ExtractedOutput← Add character to ExtractedOutput ;
i←i+8;

end
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CHAPTER VI

Result Analysis

The performance of the implemented approach was evaluated by experimentation in this section
of the article.

6.1 Embedding rate

The percentage of concealed bits in a total generated text is referred to as embedding rate,
also known as embedding capacity. For a steganography algorithm to be called efficient, it must
have a high embedding rate. According to [26] The mathematical expression of ER is expressed
as:

Where L is the Number of sentences generated, Xk is the length of the k− th sentence and the
number of bits utilized by the k − th sentence in the system is Psk.

We have compared our method with three other existed steganography algorithms to show
that we have achieved a better ER.

Table 6.1: ER comparison
Methods ER(%)
[27] 0.33
[28] 1.0
[26] 2.73
Our method 7.39
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6.2 Embedding time and Time complexity

Embedding time is the time taken to hide or embed certain number of secret bits into appro-
priate cover media. The less the embedding time is, the faster the algorithm operates. An efficient
steganography algorithm tend to keep it’s time complexity near O(n). We have calculated the
runtime of our method against the values of N, where N is the number of bits to represent each
character while embedding in our method.

Table 6.2: Time against N
N Time(in sec)
1 124.76 ± 43.23
2 49.16 ± 17.7
3 34.86 ± 5.40
4 19.81 ± 2.21
5 17.91 ± 3.81
6 12.29 ± 0.014
7 12.25 ± 1.35
8 8.21 ± 1.47

The relation between time and N can be made more clear with a chart.

Figure 6.1: Change of embedding time to the size of N
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CHAPTER VII

Conclusion and Future Work

This paper proposed and implemented a steganography method that includes encryption, ran-
domization and deep learning text generator model. It is shown in our method that the sequence
to sequence generator models can perform well with a good embedding rate and time complexity
in terms of hiding data for the purpose of secure transmission. This method was compared to
some existing similar methods and showed a better embedding rate. However, there are a lot of
rooms of improvements in the implemented method. For future works, we intend to train the
model more via transfer learning and assure more semantic coherence. And at the same time we
look forward to reduce the embedding time for increasing efficiency.
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